Eshelby's conjecture in finite plane elastostatics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Anti-plane Shear for Compressible Materials in Finite Elastostatics

This note gives a necessary and sufficient condition that a compressible, isotropic elastic material should admit non-trivial states of finite anti-plane shear. One of the simplest classes of deformations of solids is that of anti-plane shear, in which each particle of a cylindrical body undergoes a displacement parallel to the generators of the cylinder and independent of the axial position of...

متن کامل

An Isoparametric Finite Element Model for Large-Strain Elastostatics

This paper describes a simple finite element model for large-strain elastostatics. The realization of the model in a small-scale computer-code is described. The purpose of the model is to produce test problems for research on the application of penalty techniques in nonlinear elasticity. For this reason the code must balance the requirements of reasonable flexibility with those of computational...

متن کامل

A boundary element procedure for contact problems in plane linear elastostatics

— Hère we present a new solution procedure for contact problems in plane linear elastostatics via boundary intégral variational inequalities having as unknowns the trace of the displacement field and its boundary traction. We admit the case of only traction-contact boundary conditions without prescribing the displacements along some part of the boundary of the elasticly deformed body. Without i...

متن کامل

On Landis’ conjecture in the plane

In this paper we prove a quantitative form of Landis’ conjecture in the plane. Precisely, let W (z) be a measurable real vector-valued function and V (z) ≥ 0 be a real measurable scalar function, satisfying ‖W‖L∞(R2) ≤ 1 and ‖V ‖L∞(R2) ≤ 1. Let u be a real solution of ∆u − ∇(Wu) − V u = 0 in R2. Assume that u(0) = 1 and |u(z)| ≤ exp(C0|z|). Then u satisfies inf |z0|=R sup |z−z0|<1 |u(z)| ≥ exp(...

متن کامل

Around Sziklai's conjecture on the number of points of a plane curve over a finite field

Article history: Received 14 July 2008 Revised 9 February 2009 Available online 10 March 2009 Communicated by Neal Koblitz

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mechanics and Applied Mathematics

سال: 2007

ISSN: 0033-5614,1464-3855

DOI: 10.1093/qjmam/hbm024